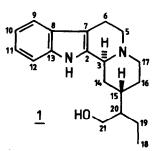
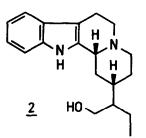
STEREOSELECTIVE SYNTHESIS OF <u>dl</u>-18,19-DIHYDROANTIRHINE AND dl-3-EPI-18,19-DIHYDROANTIRHINE

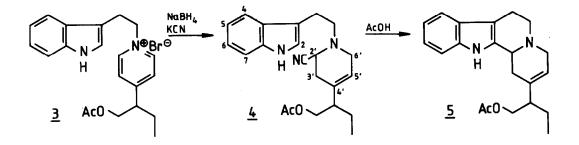

MAURI LOUNASMAA* AND REIJA JOKELA

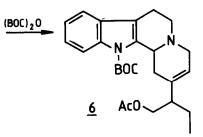

Laboratory for Organic and Bioorganic Chemistry, Technical University of Helsinki, SF-02150 Espoo, Finland

(Received in UK 10 August 1989)

<u>Abstract</u> - A rapid and stereoselective synthesis for both <u>dl</u>-18,19dihydroantirhine and <u>dl</u>-3-epi-18,19-dihydroantirhine using one and the same starting compound is described.

We recently developed a method¹ which permits choosing at will the C(12b)H-C(2)H relationship [corresponding to the C(3)H-C(15)H relationship when the biogenetic numbering² of the indole alkaloids is used] in the preparation of 2-substituted 1,2,3,4,6,7,12,12b-octahydroindolo[2,3-a]quinolizines with high degree of stereoselectivity using one and the same starting compound.

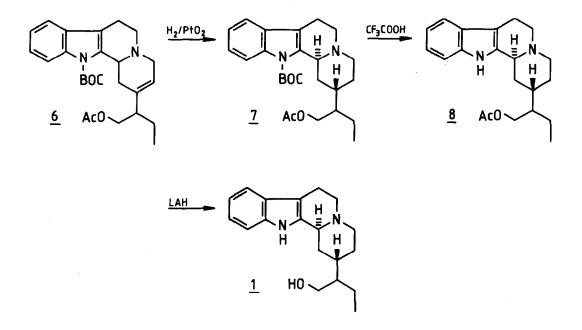



7449

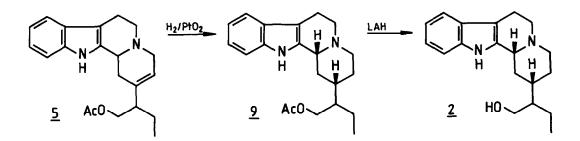
Our method seemed to be ideally suited for a rapid and stereoselective synthesis of both <u>dl</u>-18,19-dihydroantirhine <u>1</u> [C(3)H-C(15)H <u>trans</u> relationship] and <u>dl</u>-3-epi-18,19-dihydroantirhine <u>2</u> [C(3)H-C(15)H <u>cis</u> relationship] (biogenetic numbering²), which are dihydro derivatives of the known indole alkaloids antirhine³ and 3-epiantirhine⁴, respectively. In the present paper we describe the results obtained.

RESULTS AND DISCUSSION

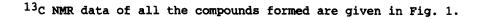
Transformation of 2-(4'-pyridyl) butanol⁵ to the corresponding acetate followed by alkylation with tryptophyl bromide⁶ yielded the known⁷ pyridinium salt <u>3</u>, which by NaBH₄ reduction and cyanide trapping^{1,8-11} was transformed to α -aminonitrile <u>4</u>. Treatment of <u>4</u> with AcOH yielded compound <u>5</u>.¹²⁻¹⁴ A part of compound <u>5</u> was transformed to the corresponding BOC-protected compound <u>6</u> using di-<u>t</u>-butyl dicarbonate [(BOC)₂O] (Scheme 1).^{11,15,16}



Scheme 1


7450

Catalytic hydrogenation (PtO₂) of the BOC-protected compound <u>6</u> led to compound <u>7</u> [C(3)H-C(15)H <u>trans</u> relationship], which by acid induced cleavage (CF₃COOH) of the BOC group afforded compound <u>8</u>. Treatment of <u>8</u> with LAH yielded <u>dl</u>-18,19-dihydroantirhine <u>1</u> (Scheme 2).



Scheme 2

By contrast, catalytic hydrogenation (PtO_2) of compound <u>5</u> led to compound <u>9</u> [C(3)H-C(15)H <u>cis</u> relationship], which by LAH treatment afforded <u>dl</u>-3-epi-18,19-dihydroantirhine <u>2</u> (Scheme 3).⁷,17,18

Scheme 3

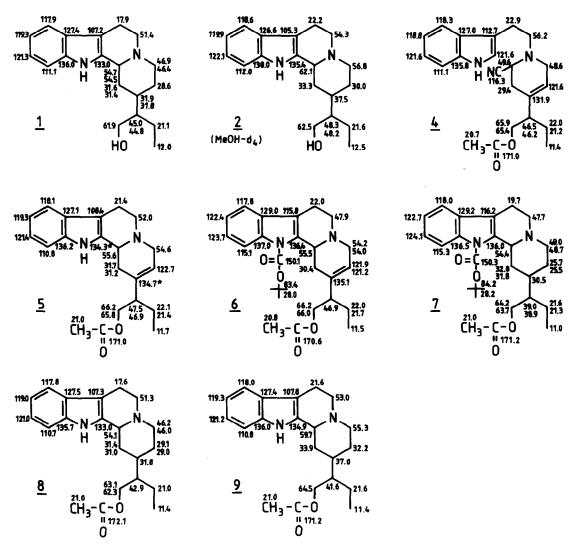
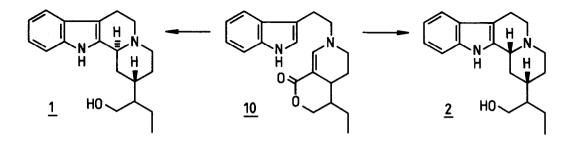



Fig. 1

Comparison of the chemical shifts found for compounds 1, 2, 5, 6, 7, 8and <u>9</u> with those of antirhine and 3-epiantirhine, 4 taking into account the conformational considerations presented in connection with the analogues,¹ t-butyl gives clear evidence of the corresponding

stereostructures depicted in the formulae. The "double signals" found for several carbons in $\underline{1}$, $\underline{2}$, $\underline{5}$, $\underline{6}$, $\underline{7}$, and $\underline{8}$ are in agreement that the samples consist of mixtures of C(20) epimers (See also the ¹H NMR spectra of compounds $\underline{5}$ and $\underline{6}$).

In connection with the present work we have reexamined the old claim of Wenkert <u>et al</u>.¹⁹ that alkaline hydrolysis (followed by decarboxylation and cyclization) of tetrahydropyridine <u>10</u> leads to <u>dl</u>-18,19dihydroantirhine <u>1</u> (Scheme 4).

Scheme 4

Repetition of the alkaline hydrolysis of tetrahydropyridine 10^{20} , led to a reaction mixture where the only clearly detectable dihydroantirhine was dl-3-epi-18,19-dihydroantirhine 2 [= dl-15-epi-18,19-dihydroantirhine, provided that both samples consist of equimolar mixtures of C(20) epimers (<u>vide supra</u>)] (Scheme 4). The presence of dl-18,19-dihydroantirhine 1, if any, must be in trace amounts (cf. Ref. 7).

CONCLUSIONS

The presented results show clearly, that our recently developed method¹ can successfully be applied to a rapid and stereoselective synthesis of both \underline{dl} -18,19-dihydroantirhine $\underline{1}$ and \underline{dl} -3-epi-18,19-dihydroantirhine $\underline{2}$.

EXPERIMENTAL

IR spectra were recorded on a Perkin-Elmer 700 spectrometer, using liquid film between NaCl crystals. IR absorption bands are expressed in reciprocal centimetres (cm^{-1}) using polystyrene calibration. ¹H and ¹³C NMR spectra were recorded in CDCl₃ (if not otherwise stated) on a Jeol JNM-FX 60 spectrometer working at 59.80 MHz (¹H NMR) and 15.04 MHz (¹³C NMR). Chemical shift data are given in ppm downfield from TMS. Abbreviations s, d, t, m, br and def are used to designate singlet, doublet, triplet, multiplet, broad and deformed, respectively. For ¹³C NMR data see Fig. 1. Mass spectrometry was done on a Jeol DX 303/DA 5000 instrument.

Preparation of compound $\underline{4}$

Hydrochloric acid (6N, 4 ml) was added dropwise to a stirred cooled solution (0°C) of KCN (3.11 g, 47.85 mmol) in H₂O (3.0 ml) and layered with Et₂O (20 ml). MeOH (5 ml), the corresponding pyridinium salt <u>3</u> (3.47 g, 8.32 mmol) prepared from tryptophyl bromide⁶ and the acetylated 2-(4'pyridyl)butanol⁵ were added, after which NaBH₄ (0.350 g, 9.26 mmol) was added during 0.5 h (0°C). Stirring was continued for 1.5 h at rt. The ethereal layer was separated and the aqueous layer was extracted several times with Et₂O. The combined organic layers were dried over Na₂SO₄ and evaporated to yield compound <u>4</u>, which was used without purification in the next step.

Y. 95% (crude²¹). Viscous oil.

IR: 3400 (NH), 2220 (CN), 1730 (C=O).

365.2062 (calc. for C₂₂H₂₇N₃O₂: 365.2103).

¹H NMR: 0.82 (3H, t, J=6.0 Hz, $-CH_3$), 2.00 and 2.02 (3H, two s, -OAc), 3.92 (1H, m, H-2'), 5.46 (1H, br s, H-5'), 6.90 (1H, d, J < 1 Hz, H-2), 7.16-7.63 (4H, m, H-4, 5, 6, 7), 8.46 (1H, br s, -NH). MS: 365 (M⁺), 338, 305, 250, 235, 175, 144 (100%), 130; exact mass:

Preparation of compound 5

Compound <u>4</u> (1.90 g, 5.21 mmol) was stirred with 50% acetic acid (200 ml) for 72 h (rt, Ar-atm). After evaporation and neutralization with 2N Na_2CO_3 the solution was extracted with CH_2Cl_2 . The combined organic extracts were dried over Na_2SO_4 and evaporated. The crude product was purified by flash chromatography (alumina, CH_2Cl_2).²²

Y. 30%. Amorphous material.

IR: 3400 (NH), 1710 (C=O).

¹H NMR: 0.81 (3H, t, J=6.0 Hz, $-CH_3$), 1.98 and 2.00 (3H, two s, -OAc),

5.50 (1H,br s, H-16), 7.12-7.53 (4H, m, H-9, 10, 11, 12), 8.51 (1H, br s, -NH). MS: 338 (M⁺), 337, 223, 170 (100%), 169; exact mass: 338.1998 (calc. for $C_{21H_{26}N_{2}O_{2}}$: 338.1990).

Preparation of compound 6

To compound 5 (0.34 g, 1.01 mmol) in toluene (8 ml) were added 50% NaOH (5 ml) and tetrabutylammonium hydrogen sulphate (90 mg). The two-phase system was stirred under argon for 5 min. Di-<u>t</u>-butyl dicarbonate (0.44 g, 2 equiv.) in toluene (2 ml) was added during 10 min and stirring was continued for 10 min. The organic layer was separated and the aqueous layer was washed several times with CH_2Cl_2 . The combined organic layers were dried over Na_2SO_4 and evaporated. The crude product was purified by flash chromatography (alumina, CH_2Cl_2).

Y. 75%. Viscous oil.

IR: 1730 (C=O).

¹H NMR: 0.88 (3H, t, J=6.5 Hz, -CH₃), 1.66 (9H, s, -C(CH₃)₃), 2.01 and 2.03 (3H, two s, -OAc), 4.09 (1H, m, H-3), 5.56 (1H, br s, H-16), 7.13-7.50 (3H, m, H-9, 10, 11), 8.04 (1H, m, H-12). MS: 438 (M⁺), 382, 381, 337, 214 (100%), 170, 169; exact mass: 438.2539 (calc. for $C_{26}H_{34}N_{2}O_{4}$: 438.2519).

Preparation of compound 7

Catalytic hydrogenation (PtO₂) of compound <u>6</u> (0.15 g, 0.34 mmol) in MeOH (7 ml) for 24 h afforded compound $\underline{7}$. Y. 80%. Viscous oil.

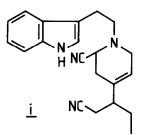
IR: 1730 (C=O).

¹H NMR: 0.91 (3H, t, J=6.0 Hz, -CH₃), 1.66 (9H, s, -C(CH₃)₃), 2.02 (3H, s, -OAc), 7.15-7.50 (3H, m, H-9, 10, 11), 7.96 (1H, m, H-12). MS: 440 (M⁺), 384, 383 (100%), 339, 269; exact mass: 440.2675 (calc. for $C_{26H_{36}N_{2}O_{4}}$: 440.2675).

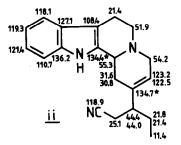
Preparation of compound 8

Trifluoroacetic acid (0.3 ml) was added during 15 min to a cooled solution (0°C) of compound $\underline{7}$ (0.14 g, 0.32 mmol) in CH_2Cl_2 (0.6 ml). Stirring was continued (rt) for 3 h until all of the starting compound had disappeared (TLC). The mixture was neutralized with saturated aq. NaHCO₃ and extracted with CH_2Cl_2 . The crude product $\underline{8}$ was purified by flash chromatography (alumina, $CH_2Cl_2/MeOH$; 97/3).

Y. 60%. Amorphous material (lit.⁷ amorphous material).


IR: 3400 (NH), 1730 (C=O). ¹H NMR: 0.91 (3H, def, $-CH_2$), 2.02 (3H, s, -OAc), 4.17 (1H, m, H-3), 6.99-7.51 (4H, m, H-9, 10, 11, 12), 8.37 (1H, br s, -NH). MS: 340 (M⁺, 100%), 339, 225, 197, 184, 170, 169; exact mass: 340.2148 (calc. for C₂₁H₂₈N₂O₂: 340.2151). Preparation of compound 1 LAH reduction of compound 8 (60 mg, 0.18 mmol) in abs. THF for 2.5 h (rt, Ar-atm) afforded crude product 1, which was purified by TLC (silica, $CH_2Cl_2/MeOH; 9/1).$ Y. 35%. Amorphous material (lit.⁷ amorphous material). IR: 3420 (NH), 3270 (OH). ¹H NMR: 0.93 (3H, def, -CH₃), 4.29 (1H, m, H-3), 7.00-7.54 (4H, m, H-9, 10, 11, 12), 8.80 (1H, br s, -NH). MS: 298 (M⁺), 297 (100%), 225, 197, 184, 170, 169; exact mass: 298.2025 (calc. for C10H26N2O: 298.2041). Preparation of compound 9 Catalytic hydrogenation (PtO₂) of compound 5 (0.33 g, 0.98 mmol) in MeOH (10 ml) for 40 h afforded compound 9. Y. 35%. Mp. 133-135°C (n-hexane) (lit.¹⁸ 142-143°C). IR: 3400 (NH), 2840 and 2780 (Bohlmann bands), 1730 (C=O). ¹H NMR: 0.92 (3H, def, -CH₃), 2.06 (3H, s, -OAc), 7.00-7.54 (4H, m, H-9, 10, 11, 12), 8.03 (1H, br s, -NH). MS: 340 (M⁺, 100%), 339, 225, 197, 184, 170, 169; exact mass: 340.2128 (calc. for C₂₁H₂₈N₂O₂: 340.2151). Preparation of compound 2 LAH reduction of compound 9 (0.15 g, 0.44 mmol) in abs. THF for 3 h (rt, Ar-atm) afforded crude product 2, which was purified by TLC (silica, $CH_2Cl_2/MeOH; 9/1).$ Y. 50%. Mp. 197-199°C (MeOH) (lit.¹⁸ 196.8-197.8°C). IR: 3320 (OH), 2840 and 2780 (Bohlmann bands). ¹H NMR: 0.89 (3H, def, -CH₃), 7.05-7.56 (4H, m, H-9, 10, 11, 12), 8.01 (1H, br s, -NH). MS: 298 (M⁺), 297 (100%), 225, 197, 184, 170, 169; exact mass: 298.2048 (calc. for C19H26N20: 298.2041). Alkaline treatment of tetrahydropyridine 10

Alkaline hydrolysis (followed by decarboxylation and cyclization) of 60 mg of tetrahydropyridine 10^{20} using 15 ml of 10% KOH (24 h, 60 °C, Ar-atm)


7456

led	to a reaction mixture where the only clearly detectable
	cantirhine, purified by TLC (alumina, EtOAc/MeOH; 4/1), was <u>dl</u> -3-epi- dihydroantirhine <u>2</u> .
Y. 25%	
Analyt	ical data were identical with those described above for compound $\underline{2}$.
REFERE	NCES AND NOTES
1.	Lounasmaa, M.; Jokela, R. <u>Tetrahedron</u> 1989, <u>45</u> , 3975.
2.	Le Men, J.; Taylor, W. <u>Experientia</u> 1965, <u>21</u> , 508.
3.	Johns, S.R.; Lamberton, J.A.; Occolowitz, J.L. <u>Aust. J. Chem.</u> 1967, <u>20</u> , 1463.
4.	Kan-Fan, C.; Brillanceau, M.H.; Husson, HP. <u>J. Nat. Prod.</u> 1986, <u>49</u> , 1130.
5.	Pailer, M.; Beier, G. <u>Monatsh. Chem.</u> 1957, <u>88</u> , 830.
6.	Hoshino, T.; Shimodaira, K. <u>Liebigs Ann. Chem.</u> 1935, <u>520</u> , 19.
7.	Chevolot, L.; Husson, HP.; Potier, P. <u>Tetrahedron</u> 1975, <u>31</u> , 2491.
8.	Fry, E.M.; <u>J. Org. Chem.</u> 1963, <u>28</u> , 1869.
9.	Fry, E.M.; <u>J. Org. Chem.</u> 1964, <u>29</u> , 1647.
10.	Lounasmaa, M., in "Studies in Natural Products Chemistry", ed.
	Atta-ur-Rahman, Vol. 1. Stereoselective Synthesis (Part A),
	Elsevier, Amsterdam, 1988, pp. 89-122.
11.	Tamminen, T.; Jokela, R.; Tirkkonen, B.; Lounasmaa, M. <u>Tetrahedron</u>
	1989, <u>45</u> , 2683.
12.	Jokela, R.; Schüller, S.; Lounasmaa, M. <u>Heterocycles</u> 1985, <u>23</u> , 1751.
13.	Lounasmaa, M.; Jokela, R. <u>Heterocycles</u> 1986, <u>24</u> , 1663.
14.	Jokela, R.; Karvinen, E; Tolvanen, A; Lounasmaa, M. <u>Tetrahedron</u>
	1988, 44, 2367.
15.	Grierson, D.S.; Harris, M.; Husson, H-P. <u>Tetrahedron</u> 1983, <u>39</u> ,
	3683.
16.	Lounasmaa, M.; Karvinen, E.; Koskinen, A.; Jokela, R. Tetrahedron
	1987, 43, 2135.
17.	Chevolot, L.; Husson, A.; Kan-Fan, C.; Husson, HP.; Potier, P.
	Bull. Soc. Chim. Fr. 1976, 1222.
18.	Kimura, T.; Ban, Y. <u>Chem. Pharm. Bull.</u> 1969, <u>17</u> , 296.
19.	Wenkert, E.; Sprague, P.W.; Webb, R.L. J. Org. Chem. 1973, 38,
	4305.
20.	Lounasmaa, M.; Husson, HP. <u>Acta Chem. Scand.</u> 1979, <u>B33</u> , 466.

- 21. A weak second molecular peak at $\underline{m}/\underline{z}$ 332 suggested the presence of compound \underline{i} in the crude product $\underline{4}$.

22. The isolation of small amounts of compound $\underline{11}$ (M⁺ at $\underline{m/z}$ 305) in connection with the purification of compound 5 was in agreement with the detection of compound \underline{i} in the crude product $\underline{4}$ (cf. Note 21).

